

LU-FE1 Activities IEEE / ASME / AI /Robotics Students Clubs

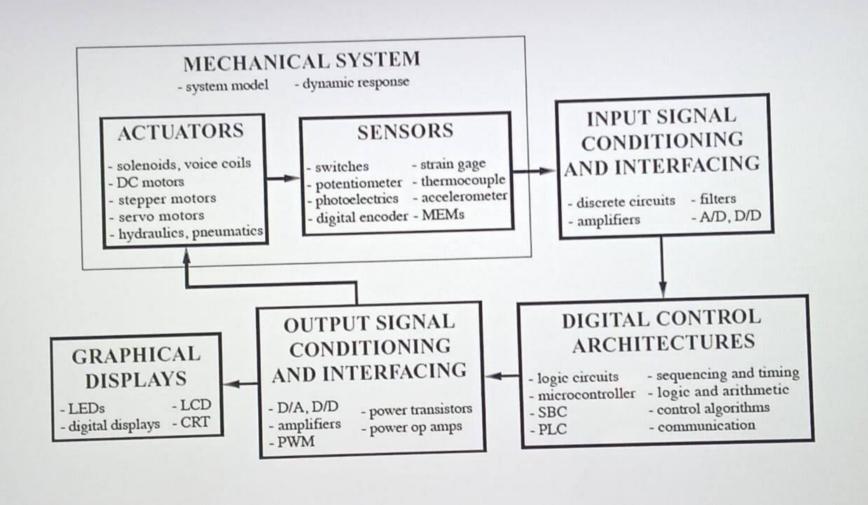
Introduction to Mechatronics System Design

Maher M. EL RAFEI

Associate Professor for Control Systems and Robotics - Director

maher.elrafei@ul.edu.lb

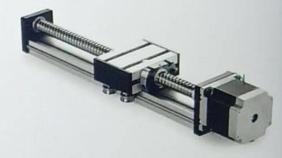
Wednesday November 19, 2025



Outline

- 1. Mechatronics Definitions
- 2. Mechatronics System Components
- 3. Mechatronics Applications
- 4. Design Approaches
 - * Electromechanical System Design Approach
 - * Mechatronics System Design Approach (V-Model Approach)
- 5. References

Load Bearing


Belt Drives

Gears

Chain and sprocket drives

Lead Screw and Nut Drives

- 1. Microcontroller Boards: Arduino Controllers
- 2. SBC: Raspberry Pi Controllers
- 3. PLCs: Siemens, Schneider Electric, Allen Bradley ...

The integration of mechanical, electrical, and software systems has led to the creation of complex machines that can perform a wide range of tasks. Mechatronics systems have many applications, from industrial automation to healthcare to entertainment and beyond.

Industrial Automation

Robotic systems that perform repetitive and dangerous tasks in industrial settings.

Healthcare

Advanced medical equipment that can perform precise and complex procedures with minimal human intervention.

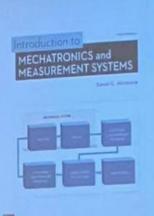
Delivery Systems

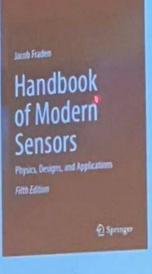
Autonomous machines that can deliver goods and services to remote or hardto-reach locations.

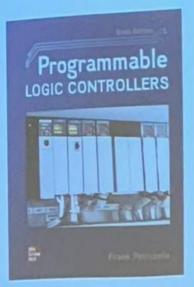
Applications of Mechatronics Systems

Tesla Autopilot: A self-driving system that includes ultrasonic sensors, cameras, and radar to detect and avoid collisions.

Robotic Surgery: A system that enables surgeons to operate on patients remotely, using a robot that has a high degree of control and dexterity.


Smart Home Security: A system that combines sensors, cameras, and machine learning to identify potential security risks and alert homeowners of any issues.




Automated Warehouse: A system that uses robotics to move products around the warehouse, reducing human involvement and increasing efficiency.

Outline

- 1. Mechatronics Definitions
- 2. Mechatronics System Components
- 3. Mechatronics Applications
- 4. Design Approaches
 - * Electromechanical System Design Approach
 - * Mechatronics System Design Approach (V-Model Approach)
- 5. References

Presentation

Introduction to Mechatronics System Design

This session includes:

- Mechatronics definitions
- Mechatronics system components
- Mechatronics Applications
- 🔷 Design Approaches

Dr. Maher El Rafei

Wednesday November 19

At 12:00 PM

Auditorium

Associate Professor for Control Systems and Robotics - Director Lebanese University, Faculty of Engineering 1.

in Maher El Rafei

Maher El Rafei

